Ai: To interpret or to explain?
Zhong, J. and Negre, E. (2021). Ai: To interpret or to explain? In Congrès Inforsid (INFormatique des ORganisations et Systèmes d’Information et de Décision), pages 149 - 164.
September 2025 -: Assistant professor (Maîtres de conférences) et University Paris 8 and the LIASD
Zhong, J. and Negre, E. (2021). Ai: To interpret or to explain? In Congrès Inforsid (INFormatique des ORganisations et Systèmes d’Information et de Décision), pages 149 - 164.
Zhong, J. and Negre, E. Context-aware explanations in recommender systems. In International Conference on Deep Learning, Artificial Intelligence and Robotics, pages 76–85. Springer.
Zhong, J. and Negre, E. Towards improving user-recommender systems interactions. In 2022 IEEE/SICE International Symposium on System Integration (SII), pages 816–820. IEEE.
Zhong, J. and Negre, E. Towards better representation of context into recommender systems. International Journal of Knowledge-Based Organizations (IJKBO), 12(2):1–12.
Zhong, J. and Negre, E. Shap-enhanced counterfactual explanations for recommendations. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, pages 1365–1372.
Zhong, J. and Negre, E. $A^3R$: Argumentative explanations for recommendations. In 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA), pages 1–9. IEEE.
Le Ngoc, L., Zhong, J., Negre, E., and Abel, M.-H. Constraint-based recommender system for crisis management simulations. In The 56th Hawaii International Conference on System Sciences, pages 1778–1789.
Le Ngoc, L., Zhong, J., Negre, E., and Abel, M.-H. Corec-cri: How collaborative and social technologies can help to contextualize crises? To appear in SMC 2023.
Zhong, J. and Negre, E. (2023). Context-aware feature attribution through argumentation CARSs Workshop at Recsys 2023
Zhong, J., Le Ngoc, L., Negre, E., and Abel, M.-H. (2023). Ontology-based crisis simulation system for population sheltering management. SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL
Zhang, H. and Zhong, J. (2025). Efficient and Effective Counterfactual Explanations for Random Forests. Expert Systems with Applications
Zhong, J. and Negre, E. (2025). Argumentation meets matrix factorization: A dual perspective for explainable recommendations. Applied Soft Computing
Talk at Workshop EXPLAIN'AI at EGC 2022, Blois, France
Talk at EDA 2022 : 18ème journées Business Intelligence & Big Data, Clermont-Ferrand, France
Talk at Workshop ATELIER EXPLAIN'AI at EGC 2023, Lyon, France